Applications of Differential Equations BC:

Average Value of a function $f(x)$ on an interval $[a, b]$:

MVT for Integrals:

EX: Given $f(x)=\sqrt{x-1}$, verify MVT for Integrals for f on $[1,10]$, and find the value of c as indicated by the thrm.

EX: The graph is given, find the average value of f on $[0,4]$.

EX: The velocity of a particle moving along a line is $v(t)=3 t^{2}-18 t+24$. Find the average velocity from $t=1$ to $t=3$.

EX: On a certain day, the changes in the temperature in a greenhouse beginning at 12 noon are represented by $f(t)=\sin \left(\frac{t}{2}\right)$ degrees Fahrenheit, where t is the number of hours elapsed after 12 noon. If at 12 noon, the temperature is $95^{\circ} \mathrm{F}$, find the temperature in the greenhouse at 5 pm .

EX: Water is leaking from a faucet at the rate of $l(t)=10 e^{-0.5 t}$ gallons per hour, where t is measured in hours. How many gallons of water will have leaked from the faucet after a 24 hour period?

EX: Write an equation for the curve that passes through the point $(3,4)$ and has a slope at any point (x, y) as $\frac{d y}{d x}=\frac{x^{2}+1}{2 y}$.

EX: Determine the particular solution for $\frac{d y}{d x}=4 x^{2} y^{2}$ given that $y(1)=-\frac{1}{2}$.

Growth \& Decay Models

1. If $\frac{\pi y}{d i}=k y$, then the rate of change y is proportional to y.
2. If y is a differentiable function of t with $y>0, \frac{d y}{d t}=k y$ then $y(t)=C e^{k t}$; where C is initial value of y and k is proportionality constant. If $k>0$, then k is a growth constant and if $k<$ 0 , then k is the decay constant.
EX: If the amount of bacteria in a culture at any time increases at a rate proportional to the amount of bacteria present and there are 500 bacteria after one day and 800 bacteria after the third day:
1) approximately how many bacteria are there initially, and
2) approximately how many bacteria are there after 4 days?

EX: Radioactive Radium has a half-life of approximately 1599 years. What amount remains after 1000 years if the initial quantity was 10 g ?

EX: The rate of change of the number of coyotes $N(t)$ in a population is directly proportional to $650-N(t)$, where t is the time in years. When $t=0$, the population is 300 , and when $t=$ 2 , the population has increased to 500 . Find the population when $t=3$.

EX: During a chemical reaction, substance A is converted into substance B at a rate that is proportional to the square of the amount of A. When $t=0,60 \mathrm{~g}$ of A is present, and after 1 hour $(t=1)$, only 10 g of A remains unconverted. How much of A is present after 2 hours?

