Applied Differential Equations Day 2

- 1. Under ideal conditions, air pressure decreases continuously with the height above sea level at a rate proportional to the pressure at that height. The barometer reads 30 inches at sea level and 15 inches at 18,000 feet. Find the barometric pressure at 35,000 feet.
- 2. Radioactive radium has a half-life of approximately 1599 years. The initial quantity is 15 grams. How much remains after 750 years?
- 3. At any time $t \ge 0$ in hours, the rate of growth of a population of bacteria is given dy = 1
 - by $\frac{dy}{dt} = \frac{1}{2}y$. Initially, there are 200 bacteria in the culture.
 - a. Use separation of variables to solve *y*, the number of bacteria present, at any time $t \ge 0$.
 - b. Write, but do not evaluate an expression to find the average number of bacteria in the population for $0 \le t \le 10$.
 - c. Write an expression to find the average rate of bacteria growth over the first 10 hours of growth. Indicate units of measure.
- 4. Given the differential equation $y' = \frac{2x}{y}$ with a particular solution in the form of

y = f(x) that satisfies the initial condition f(1) = 2:

- a. Use Euler's Method, starting at x = 1 with two steps of equal size, to approximate y(1.4). Show the work that leads to your answer.
- b. Find the particular solution to the given differential equation that passes through (1,2) and state its domain.
- 5. If $\frac{dy}{dx} = 2xy^2$, and y(-1) = 2, find y(2).
- 6. When an object is removed from a furnace and placed in an environment with a constant temperature of $80^{\circ}F$, its core temperature is $1500^{\circ}F$. One hour after it is removed, the core temperature is $1120^{\circ}F$. Find the core temperature 5 hours after the object is removed from the furnace.
- 7. The management at a certain factory has found that a worker can produce at most 30 units in a day. The learning curve for the number of units N produced per day after a new employee has worked t days is $N = 30(1 e^{kt})$. After 20 days on the job, a particular worker produces 19 unites.
 - a. Find the learning curve for this worker
 - b. How many days should pass before this worker is producing 25 units per day?